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OPTIMAL CONTROL THROUGH
BIOLOGICALLY-INSPIRED PURSUIT 1

Cheng Shao and D. Hristu-Varsakelis

Department of Mechanical Engineering and
Institute for Systems Research

University of Maryland, College Park, MD 20742 USA

Abstract: Inspired by the process by which ants gradually optimize their foraging
trails, this paper investigates the cooperative solution of a class of free-final
time, partially-constrained final state optimal control problems by a group of
dynamic systems. A cooperative, pursuit-based algorithm is proposed for finding
optimal solutions by iteratively optimizing an initial feasible control. The proposed
algorithm requires only short-range, limited interactions between group members,
and avoids the need for a “global map” of the environment on which the group
evolves. The performance of the algorithm is illustrated in a series of numerical
experiments.

Keywords: Co-operative control, Optimization, Agents, Group work, Trajectories

1. INTRODUCTION

In recent years, problems in cooperative control
are increasingly capturing the attention of re-
searchers, fueled by the development of decentral-
ized control systems with cost and performance
advantages. The rising interest in deploying coop-
erative systems also stems from the fact that such
systems have the potential to perform tasks that
are not feasible for individuals. Examples include
remote exploration and information gathering by
swarms of small autonomous robots (Brooks and
Flynn, 1989), and satellite arrays, to name a
few. Members of such “engineered collectives”
usually have limited sensing, communication and
computing capabilities. This suggests that each
member can only perform relatively simple tasks.
On the other hand, the limitations of individuals
can often be overcome by cooperation, if one can
identify an effective way to organize the group
into “more than the sum of its parts”. This is

1 This work was supported by the National Science
Foundation under Grant No. EIA0088081 and by ARO
ODDR&E MURI01 Grant No. DAAD19-01-1-0465, (Cen-
ter for Communicating Networked Control Systems,
through Boston University). Corresponding author: D.
Hristu-Varsakelis, Tel: +1-301-405-5283, Fax: +1-301-314-
9477, e-mail: hristu@umd.edu

often demonstrated – rather impressively – by
biological collectives. For example, a school of
fish can coordinate their movement in a tight for-
mation; worker honey bees share information by
“dancing” and distribute themselves among nec-
tar sources in accordance with the profitability of
each source; ants are known to utilize pheromone
secretions for recruiting nest-mates and for opti-
mizing their foraging trails (Camazine, 2001). Ob-
servations of such activities in nature have already
seeded a variety of research, from modeling of
animal group behaviors (Camazine, 2001; Bruck-
stein, 1993; Jadbabaie et al., 2003), to distrib-
uted collective covering and searching (Wagner
et al., 1999), cooperative estimation (Roumeliotis
and Bekey, 2002) and biologically-motivated opti-
mization (Dorigo et al., 1996).

One of the earliest optimization methods in-
spired by trail formation in ants was presented in
(Bruckstein, 1993), where it was shown that ants
that “pursued” one another on R

2 (each point-
ing its velocity vector towards a predecessor) had
the effect of producing progressively “straighter”
trails. That idea was later extended to path opti-
mization problems involving kinematic vehicles in
non-Euclidean environments (Hristu-Varsakelis,
2000). The last two works were restricted ex-



clusively to the “discovery” of geodesics, mean-
ing that the autonomous system-members of the
group had very simple dynamics with no drift
terms. This paper shows that the earlier work can
be generalized to a much broader class of optimal
control problems, and collectives whose members
have non-trivial dynamics. The proposed algo-
rithm is based on “local pursuit” (to use the term
coined in (Bruckstein, 1993)) and guides members
of a group towards a solution of a free final time,
partially-constrained final state optimal control
problem, this time in a broader and more intri-
cate setting. Under “continuous local pursuit”, as
this iterative, decentralized algorithm is termed,
agents do not need a global map of their environ-
ment or even an agreed-upon common coordinate
system. The algorithm is most useful in trajec-
tory optimization problems which are easier to
solve when boundary conditions are “close” to one
another (because of, for example, the members’
computational or sensing limitations), with the
term “close” taken to include not only geograph-
ical separation but also distance on the manifold
on which copies of a dynamical system evolve.

The remainder of this paper is organized as fol-
lows: Section 2 describes the optimal problems to
be addressed and proposes an iterative algorithm
that is appropriate for a group of cooperative
dynamic systems. Section 3 discusses the main
results concerning the performance of the pro-
posed algorithm. A pair of illustrative numerical
examples are given in Section 4.

2. A BIO-INSPIRED ALGORITHM FOR
OPTIMAL CONTROL

This paper explores the solution of optimal control
problems using a group of cooperating “agents”.
The term “agent” refers to a member of a group
of dynamical systems, each taken to be a “copy”
of:

ẋk = f(xk, uk), xk(t) ∈ R
n
, uk(t) ∈ Ω ⊂ R

m (1)

for k = 0, 1, 2 . . .. Physically, each copy of (1)
could stand for a robot, UAV or other autonomous
system. The problem of interest is as follows:

Problem 1. Find a trajectory x∗(t), a final time
Γ∗ > 0 and a final state x∗(Γ∗) that minimize

J(x, ẋ, t0) =
∫ t0+Γ

t0

g(x, ẋ)dt + G(x(t0 + Γ))(2)

subject to the constraints x(t0) = x0 and Q(x(t0+
Γ)) = 0.

Here it is assumed that g(x(t), ẋ(t)) ≥ 0, G(x(t0+
Γ)) ≥ 0 and that Q(·) is an algebraic function of
the state.

Definition 1. Given the final state constraint Q(x) =
0, the constraint set of x is

SQ = {x|Q(x) = 0}.

Now the function G(x) in (2) can be replaced by

G(x) =
{

F (x) if x ∈ SQ

0 if x /∈ SQ

with F (x) ≥ 0, ∀x ∈ SQ. Problem 1 involves
optimal control with free final time, partially-
constrained final state. Fixed final state problems,
where SQ is a single state (Shao and Hristu-
Varsakelis, 2004), are special cases of what are
considered here.

For any pair of fixed states a, b ∈ D ⊂ R
n, suppose

the optimal trajectory from a to b with free final
time (minimizing J with respect to x, Γ only)
is denoted by x∗(t) and that the corresponding
optimal final time is Γ∗(a, b). The cost of following
x∗ is denoted as:

η(a, b, t0) �
∫ t0+Γ∗

t0

g(x∗, ẋ∗)dt + G(x∗(t0 + Γ∗))

= min
x,Γ

J(x, ẋ, t0) (3)

subject to x(t0) = a, x(t0 + Γ) = b.

Now, let x∗(t) be the optimal trajectory from an
initial state a to the constraint set SQ, and let the
corresponding optimal final time from a to SQ be
Γ∗

Q(a, SQ). The cost of following x∗ is denoted by

ηQ(a, t0) �
∫ t0+Γ∗

Q

t0

g(x∗, ẋ∗)dt + G(x∗(t0 + Γ∗
Q))

= min
x,ΓQ

J(x, ẋ, t0) (4)

subject to x(t0) = a, Q(x(t0 + ΓQ)) = 0.

The cost of following a generic trajectory x(t) of
(1) during [t0, t0 + σ) is denoted by:

C(x, t0, σ) �
∫ t0+σ

t0

g(x, ẋ)dt + G(x(t0 + σ)) (5)

The following facts can be derived easily from the
properties of optimal trajectories and are helpful
in the sequel:

Fact 2. Let η, ηQ, C as defined in (3)(4)(5), and
xk(t) be a generic trajectory of (1). Then, the
following hold:

(1) η(a, b, t0) ≤ C(xk, t0, Γ) for any xk(·) with
xk(t0) = a, xk(t0 + Γ) = b.

(2) η(a, c, t0) ≤ η(a, b, t0)+η(b, c, t0+σ), with σ =
Γ∗(a, b).

(3) ηQ(a, t0) ≤ η(a, b, t0) for any b ∈ SQ.



Assume that there is available an initial feasible
control/trajectory pair (ufeas(t), xfeas(t)) (but
sub-optimal) for (1), obtained through a combi-
nation of a-priori knowledge about the problem
and/or random exploration. Inspired by the idea
in (Bruckstein, 1993), the agents are scheduled to
leave the initial state x0 sequentially and pursue
one another in a way which will be made precise
shortly. The sequence is initiated with the first
agent following xfeas to the set SQ. Each agent
will attempt to intercept its predecessor – along
optimal trajectories defined by (3) – if the pre-
decessor has not reached the final state. If the
predecessor has already reached the constraint set
SQ, then the pursuer evolves along the optimal
trajectory defined by (4). The precise rules that
govern the movement of each agent are:

Algorithm 1. (Continuous Local Pursuit): Iden-
tify the starting state x0 on D and the constraint
set SQ. Let x0(t) (t ∈ [0, T0]) be an initial trajec-
tory satisfying (1) with x0(0) = x0, Q(x0(T0)) =
0. Choose the pursuit interval ∆ such that 0 <
∆ ≤ T0.

(1) For k = 1, 2, 3 . . ., let tk = k∆ be the starting
time of kth agent. Let uk(t) = 0, xk(t) = x0

for 0 ≤ t ≤ tk.
(2) For all t ≥ tk, calculate u∗

t (τ) for all t ∈
[tk, tk+Tk] such that f(x̂k(τ), u∗

t (τ)) = ˙̂xt(τ),
and x̂t(τ) achieves


η(xk(t), xk−1(t), t), if xk−1(t) /∈ SQ

(τ ∈ [t, t + Γ∗(xk(t), xk−1(t))])
ηQ(xk(t), t), if xk−1(t) ∈ SQ

(τ ∈ [t, t + Γ∗
Q(xk(t), SQ)])

(3) Apply uk(t) = u∗
t (0) to the kth agent.

(4) Repeat from step 2, until the kth agent
reaches SQ.

Under continuous local pursuit (CLP), each agent
continuously updates its own trajectory at every
t ∈ [tk, tk + Tk]. It is possible to alter the algo-
rithm so that each agent only performs a finite
number of trajectory optimizations as it evolves
from x0 to SQ. The resulting “sampled local pur-
suit” algorithm is detailed in (Shao and Hristu-
Varsakelis, 2004).

The (k − 1)th agent is designated as the “leader”
and the kth agent as the “follower” during pursuit.
As Step 2 of the algorithm indicates, there are two
types of followers’ movements, “free running” and
“catching up”, depending on whether the leader
has reached the final constraint SQ or not. The
former type lets agents “learn” from their leaders,
while the “free running” stage enables them to
find the optimal final state within SQ. Both stages
are essential for the cooperative solution to an
optimization problem with partially-constrained
final state.

3. MAIN RESULTS

The CLP algorithm defines an ordered sequence of
trajectories {xk(t)}. This section will first investi-
gate the convergence of the trajectories’ cost, and
then will show that the trajectories themselves
converge to a local optimum. It will be convenient
to distinguish between the planned trajectories,
denoted by x̂(t), that a follower computes at every
point in time, and the realized trajectories, de-
noted by x(t), which the follower actually evolves
along.

Lemma 1. Consider a leader-follower pair and a
pursuit interval ∆ defined in continuous local
pursuit. Let the leader’s trajectory be xk−1(t) (t ∈
[tk−1, tk−1 + Tk−1]) and λ ∈ [0, Tk−1). Suppose
the follower updates its trajectory only once during
[tk, tk + Tk] as described next:

• If λ < Tk−1 − ∆, the follower moves along
the optimal trajectory joining xk(tk + λ) and
xk−1(tk+λ) (in the sense of (3)) with optimal
final time Γ = Γ∗(xk(tk + λ), xk−1(tk + λ)).
During other times, the follower replicates
the leader’s trajectory, i.e.{

xk(t) = xk−1(t − ∆) t ∈ [tk, tk + λ]
xk(t) = xk−1(t − Γ) t ∈ [tk + λ + Γ, tk + Tk]

• If λ ≥ Tk−1 − ∆, the follower evolves along
the optimal trajectory from xk(tk + λ) to
the constraint set SQ (in the sense of (4)).
Similarly, during other times

xk(t) = xk−1(t − ∆) t ∈ [tk, tk + λ]

Then the cost along the follower’s trajectory will
be no greater than the leader’s.

PROOF. First, choose λ < Tk−1−∆. Starting at
time tk +λ and during t ∈ [tk +λ, tk +λ+Γ]), the
follower moves on the locally optimal trajectory
xk(t). The cost along xk is

C(xk, tk, Tk)

= C(xk, tk, λ) + C(xk, tk + λ + Γ, Tk − λ − Γ)

+η(xk(tk + λ), xk−1(tk + λ), tk + λ)

≤C(xk−1, tk−1, λ) + C(xk−1, tk−1 + λ, ∆)

+C(xk−1, tk−1 + λ + ∆, Tk−1 − λ − ∆)

= C(xk−1, tk−1, Tk−1) (6)

where Γ = Γ∗(xk(tk + λ), xk−1(tk + λ)). If λ ≥
Tk−1 − ∆, the cost along xk is

C(xk, tk, Tk)

= C(xk, tk, λ) + ηQ(xk(tk + λ), tk + λ)

≤C(xk−1, tk−1, λ) + C(xk−1, tk−1 + λ, Tk−1 − λ)

= C(xk−1, tk−1, Tk−1)



Therefore the cost along the follower’s trajectory
is no greater than the leader’s. �

Now the cost of the iterative trajectories can be
shown to converge under CLP:

Lemma 2. (Convergence of Cost) If the agents of
(1) evolve under CLP, the cost of the iterated
trajectories converges.

PROOF. Suppose the cost along the leader’s
trajectory xk−1(t) (t ∈ [tk−1, tk−1 + Tk−1]) is
Ck−1. Define a trajectory sequence xi

k(t) (t ∈
[tk, tk + T i

k]), i = 0, 1, 2 . . . whose corresponding
costs and final times are Ci

k and T i
k, as follows: let

x0
k(t) = xk−1(t) (i.e. the trajectory of a “leader”)

and xi
k (i > 0) is the trajectory of an agent

that pursues xi−1
k by performing only a single

trajectory update, as described in Lemma 1 with
λ = (i − 1)δ, δ > 0 (see Fig. 1).
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Fig. 1. Illustration of the trajectory sequence
xi

k(t). Each trajectory is obtained by a single
update upon its predecessor.

According to Lemma 1, the cost of each follower’s
trajectory will be no greater than the leader’s,
thus

Ci
k ≤ Ci−1

k ⇒ C∞
k ≤ C0

k = Ck−1

with δ ≥ 0.

Let δ = Tk−1/i, then δ → 0 as i → ∞. At
the limit, the trajectory x∞

k (t) is exactly what
would be obtained by an agent that pursues
another evolving along xk−1, using CLP. Hence
the follower’s cost is Ck = C∞

k ≤ Ck−1. Since
the sequence {Ck} is non-increasing and bounded
below (there exists a minimum for (2) ), it must
converge to a limit. �

To proceed to the main theorem, one must require
that the optimal cost of (2) changes “little” for
small changes to the endpoints of a trajectory:

Condition 1. Assume for a generic trajectory x1(t)
there exists an ε > 0 such that for all a, b1, b2 ∈ D

and all ∆ > 0, there exists a trajectory x2(t)
such that the cost C(x1, 0, T ) (x1(0) = a, x1(T ) =
b1) from a to b1 and cost C(x2, 0, T ) (x2(0) =
a, x2(T ) = b2) from a to b2 satisfy

‖b1 − b2‖∞ < ε

⇒‖C(x1, 0, T )− C(x2, 0, T )‖∞ < L∆

for some constant L independent of ∆.

Then the next lemma holds:

Lemma 3. Let x∗(t) be a trajectory of (1) such
that: i) x∗(t) (t ∈ [0, t1 + ∆1]) is optimal (in the
sense of (3)) from x∗(0) to x∗(t1 + ∆1), and ii)
x∗(t) (t ∈ [t1, T ∗]) is optimal (in the sense of
(4)) from x∗(t1) to the constraint set SQ. Assume
Condition 1 is satisfied and 0 < t1 < t1+∆1 < T ∗.
Then the trajectory x∗(t) (t ∈ [0, T ∗]) is a local
minimum of (4) from x∗(0) to SQ.

PROOF. Pick 0 < ∆ ≤ ∆1. From principle of
optimality, x∗(t) (t ∈ [0, t1 + ∆]) and x∗(t) (t ∈
[t1, T ∗]) are each locally optimal with respect to
their corresponding end points. Suppose ‖x∗(t1 +
∆)− s‖∞ ≥ ε1 for any s ∈ SQ and that x∗(t) (t ∈
[0, T ∗]) is not a local minimum. There must exist
a ε < min(ε, ε1/2) (ε is defined in Condition 1)
and another optimum x(t) ∈ D × [0, T ] satisfying
that ‖x(t) − x∗(t)‖∞ < ε and C(x(t), 0, T ) <
C(x∗(t), 0, T ∗).
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Y2(t)

Y1(t)

SQ

Fig. 2. Illustrating the proof of Lemma 3: over-
lapping optimal trajectories form a locally
optimal trajectory.

Notice that ‖x(t1 + ∆)− s‖∞ ≥ ε for any s ∈ SQ.
Construct two trajectories y1(t), y2(t) (t ∈ [t1, t1+
∆]) that connect x(t) and x∗(t) (see Fig. 2) and
satisfy Condition 1 (with x∗ or x playing the role
of x1, and y1, y2 standing in for x2). In particular,
let y1, y2 be such that x∗(t1) = y2(t1), x∗(t1 +
∆) = y1(t1 + ∆), x(t1) = y1(t1), x(t1 + ∆) =
y2(t1 + ∆). Now ,Condition 1 implies that

C(y1(t), t1, ∆) < C(x(t), t1, ∆) + L∆

C(y2(t), t1, ∆) < C(x∗(t), t1, ∆) + L∆ (7)

Because x∗(t) (t ∈ [0, t1 + ∆]) and x∗(t) (t ∈
[t1, T ∗]) are each locally optimal, the following
holds:

C(x∗(t), 0, t1) + C(x∗(t), t1, ∆) (8)

< C(x(t), 0, t1) + C(y1(t), t1, ∆), and



C(x∗(t), t1, ∆) +

C(x∗(t), t1 + ∆, T ∗ − t1 − ∆) <

C(x(t), t1 + ∆, T − t1 − ∆) +

C(y2(t), t1, ∆) (9)

Combining (7) with (8,9) leads to

C(x∗(t), 0, T ) < C(x(t), 0, T ) + 2L∆ (10)

The cost C(x(t), 0, T ) is apparently less than
C(x∗(t), 0, T ), but if ∆ is chosen so that

0 < ∆ <
C(x∗(t), 0, T )− C(x(t), 0, T )

2L
then (10) cannot hold. This is a contradiction,
because ∆ could be chosen arbitrarily small. It
follows that x∗(t) (t ∈ [0, T ∗]) must be a local
minimum. �

The following lemmas also hold. The proofs (both
by contradiction) can be found in (Shao and
Hristu-Varsakelis, 2004) and will not be given
here.

Lemma 4. If for all times during CLP, the lo-
cally optimal trajectory from follower to leader is
unique, then the limiting trajectory x∞(t) exists
and is unique.

Lemma 5. Along the limiting trajectory produced
under CLP, the planned trajectories x̂k(t) and
realized trajectories xk(t) overlap, i.e. x̂k(t) =
xk(t). Furthermore, if the locally optimal trajecto-
ries obtained at every updating time are smooth,
then the limiting trajectory is also smooth.

The next theorem is an immediate consequence of
Lemmas 1 − 5:

Theorem 1. Suppose a group of agents evolve un-
der CLP and that at every updating time t, the
locally optimal trajectories from follower to leader
are unique. Then, the limiting trajectory obtained
is unique and locally optimal. It is also smooth if
the locally optimal trajectories calculated at every
updating time are smooth.

PROOF. From Lemma 4, the limiting trajectory
is unique. It follows that xk−1(t − ∆) = xk(t) if
xk−1(t) = x∞(t − tk−1). Choose δ1, δ2 such that
0 < δ1 < δ2 < Γ for all optimal final times Γ
of planned trajectories x̂k generated during CLP.
The limiting trajectory x∞ is piecewise smooth
and locally optimal for t ∈ [tk + iδ1, tk + iδ1 +
δ2], i = 0, 1, 2 . . . because it coincides with the
planned trajectories x̂(t). From Lemma 3 – in this
case the SQ is a single point – it can be concluded
that xk(t) (t ∈ [tk, tk +δ1+δ2]) is optimal because

it is the composition of two overlapping locally
optimal trajectories, xk(t) (t ∈ [tk, tk + δ2]) and
xk(t) (t ∈ [tk + δ1, tk + δ1 + δ2]). Successive
applications of this argument (i = 2, 3, . . .) lead
to the result that x∞(t) is locally optimal. The
smoothness is also proved “piece by piece”. �

CLP is a cooperative, decentralized algorithm
for learning optimal controls/trajectories, start-
ing from a feasible solution. Each agent is only
required to calculate optimal trajectories from its
own state to that of its nearby leader. Because
agents are separated by ∆ time units as they leave
x0, each agent relies only on local information
in order to follow its predecessor, and requires
no knowledge of the global geometry. There is
no need for agents to exchange or “fuse” local
maps that they obtain individually. Agents do not
need to communicate their choice of coordinate
systems as they evolve, nor do they need to know
the coordinates of xf . While it is possible that
a group of agents could disperse and construct
a global map from local information, such an
approach might require significantly more compu-
tation and communication than CLP. The latter
solves the optimal control problem in many “short
pieces”, which makes it appropriate for systems
with short-range sensors (for example, in the case
of a swarm of robots exploring unknown terrain),
and optimal control problems which are easier to
solve over “short” distances.

4. EXAMPLES

Consider the minimum-time control of the second-
order system ẍ = u, |u| ≤ 1, where the cost to be
minimized is J(x, ẋ, 0) = T , with the boundary
conditions x(0) = π, x(T ) = ẋ(0) = ẋ(T ) = 0.
Here the constraint set SQ is a single point in
the state space. It is well known that the optimal
control for this problem is “bang-bang”:

u∗(t) =
{−1 if t ∈ [0, T/2)

1 if t ∈ [T/2, T ]

Under CLP, the trajectory of sixth agent was
optimal. It is interesting to note that in this case,
optimality was achieved after a finite number of
iterations. Some of the iterated trajectories are
shown in Fig. 3.

A second example demonstrates the solution of a
“geodesic discovery” problem on the plane. The
agents were governed by ẋ(t) = u(t), x(t), u(t) ∈
R

2. The constraint set was a circle with radius
10, centered at the origin. All agents departed
from the point (30, 30) and moved with a constant
speed ‖ẋ‖ = 1. The time separation ∆ between
agents was 20 seconds. Each agent followed a
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Fig. 3. Iterated trajectories for minimum time
control problem through continuous local
pursuit with ∆ = 0.3π, T0 = π. The ini-
tial trajectory was produced using u0 =
− sin(2t).

straight line toward its predecessor before the
predecessor reached the circle, and moved on a
straight line perpendicular to the circle, once its
predecessor had reached the constraint set. As
illustrated in Fig. 4, the trajectories converge to
the optimum.
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Fig. 4. Iterated trajectories generated by con-
tinuous local pursuit for geodesic discovery
problems on a plane with constrained final
state.

5. CONCLUSIONS AND ONGOING WORK

This paper explored a biologically-inspired coop-
erative strategy (termed “Continuous Local Pur-
suit”) for solving a class of optimal control prob-
lems with free final time and partially-constrained
final state. The proposed algorithm generalizes
previous models that mimic the foraging behavior
of ant colonies and allows a collective to discover
optimal controls, starting from an initial subopti-
mal solution. Members of the collective are only

required to obtain local information on their en-
vironment and to calculate optimal trajectories
to their nearby neighbors. The CLP algorithm
relies on cooperation to perform a task which
would be difficult or impossible for a single system
to perform, namely solving an optimal control
problem with limited information (in terms of
coordinate systems that describe the environment
or the coordinates of the final state) and short-
range sensing.

There are several natural extensions of this work,
including investigating the algorithm’s conver-
gence rate, as well as its ability to lead to global
(as opposed to local) optimum by choice of the al-
gorithm’s parameters. It would also be interesting
to investigate comparisons between local pursuit
and established numerical methods for computing
optimal controls.
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